| Nom :    |       |  |
|----------|-------|--|
|          |       |  |
| Croupe : | Date: |  |



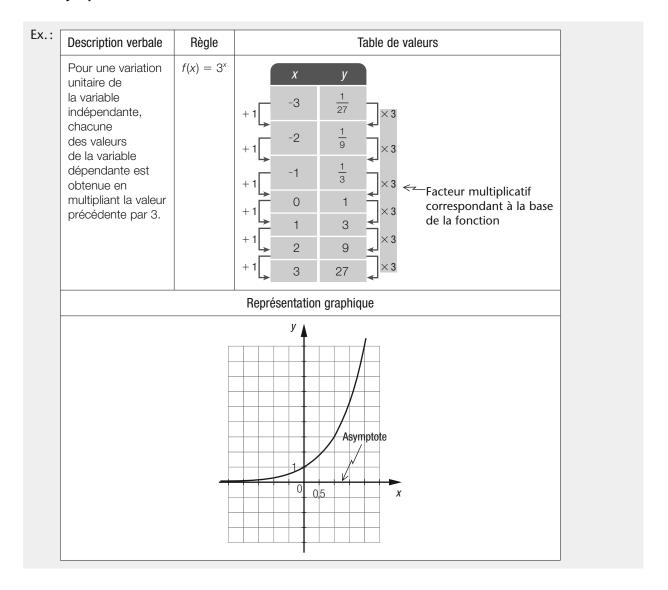
## **FONCTION EXPONENTIELLE**

Une fonction définie par une règle dans laquelle la variable indépendante apparaît en exposant est appelée une **fonction exponentielle**.

Pour une fonction exponentielle dont la règle s'écrit  $f(x) = a(base)^x$ , où  $a \ne 0$  et où la base est un nombre plus grand que 0 et différent de 1 :

- pour une variation unitaire de la variable indépendante, chacune des valeurs de la variable dépendante est liée à la suivante par un même facteur multiplicatif correspondant à la base de la fonction;
- la représentation graphique est une courbe passant par le point (0, a) et dont l'une des extrémités se rapproche de plus en plus de l'axe des abscisses sans jamais y toucher.

Une droite de laquelle une courbe se rapproche de plus en plus sans jamais y toucher s'appelle une asymptote.

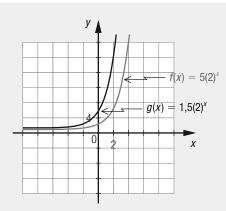


## **PARAMÈTRE** a

Dans la règle  $f(x) = a(base)^x$ , la variation du **paramètre a** provoque un étirement vertical ou une contraction verticale du graphique.

- Plus la valeur de a s'éloigne de 0, plus la courbe est étirée verticalement.
- Plus la valeur de a se rapproche de 0, plus la courbe est contractée verticalement.
- Lorsque le signe de a change, la courbe subit une réflexion par rapport à l'axe des abscisses.

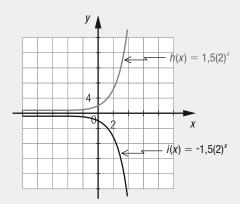
Ex.: 1)



Puisque 5 est plus éloigné de 0 que ne l'est 1,5, la courbe associée à la fonction f est plus étirée verticalement que celle associée à la fonction g.

De même, 1,5 étant plus rapproché de 0 que ne l'est 5, la courbe associée à la fonction g est plus contractée verticalement que celle associée à la fonction f.

2)



Puisque -1,5 et 1,5 sont de signes contraires, les courbes associées aux fonctions h et i sont une réflexion l'une de l'autre par rapport à l'axe des abscisses.

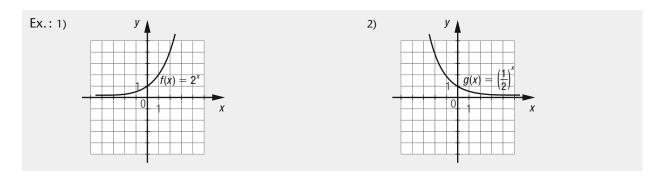
| Nom :    |        |
|----------|--------|
| Groupe : | Date : |



## **BASE D'UNE FONCTION EXPONENTIELLE**

La valeur de la **base** d'une fonction exponentielle a une incidence sur la représentation graphique de cette fonction. Pour une fonction exponentielle dont la règle s'écrit  $f(x) = a(base)^x$ :

- lorsque la base est supérieure à 1, la courbe s'éloigne de l'axe des abscisses lorsque la valeur de la variable indépendante augmente;
- lorsque la base est comprise entre 0 et 1, la courbe se rapproche de l'axe des abscisses lorsque la valeur de la variable indépendante augmente.



## RECHERCHE DE LA RÈGLE D'UNE FONCTION EXPONENTIELLE

Il est possible de déterminer la règle d'une fonction exponentielle de la forme  $f(x) = a(base)^x$  de la façon suivante.

| 1. Substituer au paramètre a la valeur initiale de la fonction.                                                             | Ex.: D'après le graphique, la valeur initiale de la fonction est 3. La règle est donc de la forme $f(x) = 3(base)^x$ . |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             | y<br>12 (2, 12)<br>8<br>4 (0, 3)<br>-4 -2 0 2 4 x                                                                      |
| 2. Substituer à x et y les coordonnées d'un point appartenant à la fonction et qui n'est pas situé sur l'axe des ordonnées. | La courbe passe par le point $(2, 12)$ .<br>$12 = 3(base)^2$                                                           |
| 3. Résoudre l'équation formée afin de déterminer la base de la fonction.                                                    | $12 = 3(base)^2$<br>$4 = (base)^2$<br>2 = base                                                                         |
| 4. Écrire la règle de la fonction obtenue.                                                                                  | $f(x) = 3(2)^x$                                                                                                        |
| 5. Valider la solution.                                                                                                     | $12 = 3 \times 2^{2}$ $12 = 3 \times 4$ $12 = 12$                                                                      |